A biomimetic nanosponge that absorbs pore-forming toxins

نویسندگان

  • Che-Ming J. Hu
  • Ronnie H. Fang
  • Jonathan Copp
  • Brian T. Luk
  • Liangfang Zhang
چکیده

Detoxification treatments such as toxin-targeted anti-virulence therapy offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera, monoclonal antibodies, small-molecule inhibitors and molecularly imprinted polymers act by targeting the molecular structures of toxins, customized treatments are required for different diseases. Here, we show a biomimetic toxin nanosponge that functions as a toxin decoy in vivo. The nanosponge, which consists of a polymeric nanoparticle core surrounded by red blood cell membranes, absorbs membrane-damaging toxins and diverts them away from their cellular targets. In a mouse model, the nanosponges markedly reduce the toxicity of staphylococcal alpha-haemolysin (α-toxin) and thus improve the survival rate of toxin-challenged mice. This biologically inspired toxin nanosponge presents a detoxification treatment that can potentially treat a variety of injuries and diseases caused by pore-forming toxins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Biomimetic Nanosponge Protects the Retina from the Enterococcus faecalis Cytolysin

Intraocular infections are a potentially blinding complication of common ocular surgeries and traumatic eye injuries. Bacterial toxins synthesized in the eye can damage intraocular tissue, often resulting in poor visual outcomes. Enteroccocus faecalis causes blinding infections and is responsible for 8 to 17% of postoperative endophthalmitis cases. These infections are increasingly difficult to...

متن کامل

Broad-Spectrum Neutralization of Pore-Forming Toxins with Human Erythrocyte Membrane-Coated Nanosponges.

Neutralization of bacterial toxins has become a compelling approach to treating bacterial infections as it may pose less selective pressure for the development of bacterial resistance. Currently, the majority of toxin neutralization platforms act by targeting the molecular structure of the toxin, which requires toxin identification and customized design for different diseases. Therefore, their ...

متن کامل

Reduction of Streptolysin O (SLO) Pore-Forming Activity Enhances Inflammasome Activation

Pore-forming toxins are utilized by bacterial and mammalian cells to exert pathogenic effects and induce cell lysis. In addition to rapid plasma membrane repair, macrophages respond to pore-forming toxins through activation of the NLRP3 inflammasome, leading to IL-1β secretion and pyroptosis. The structural determinants of pore-forming toxins required for NLRP3 activation remain unknown. Here, ...

متن کامل

Role of Pore-Forming Toxins in Neonatal Sepsis

Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to enga...

متن کامل

The Aerolysin-Like Toxin Family of Cytolytic, Pore-Forming Toxins

Pore-forming toxins (PFTs) represent the largest known group of bacterial protein toxins to date. Membrane insertion and subsequent pore-formation occurs after initial binding to cell-surface receptor and oligomerization. Aerolysin, a toxin produced by the Gram-negative bacterium Aeromonas hydrophila and related species, belongs to the PFT group and shares a common mechanism of action involving...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013